Statistical Mechanics of Lattice Systems: 2

Exact, Series and Renormalization Group Methods

D. A. Lavis and G. M. Bell Department of Mathematics King's College, London

Springer-Verlag Berlin Heidelberg New York ISBN 3-540-644336-9

Publication date: 8th March 1999

1.	$\mathrm{Th}\epsilon$	ermodynamics and Statistical Mechanics	1
	1.1	Introduction	1
	1.2	Thermodynamic Formulae and Variables	2
	1.3	Statistical Mechanical Formulae	9
	1.4	The Field-Density and Coupling-Density Representations	4
		1.4.1 Thermodynamic Formalism	5
		1.4.2 Lattice Systems	8
	1.5	Correlation Functions and Symmetry Properties	10
		1.5.1 Correlation Functions	10
		1.5.2 Symmetry Properties	12
	Exa	mples	14
_		m tu 10 li mi	
2.		ase Transitions and Scaling Theory	15
	2.1	Introduction	15
	2.2	The Geometry of Phase Transitions	17
		2.2.1 A Two-Dimensional Phase Space	18
		2.2.2 A Three-Dimensional Phase Space	20
	2.3	Universality, Fluctuations and Scaling	21
		2.3.1 Universality	22
		2.3.2 Kadanoff's Scaling Method for the Ising Model	24
	2.4	General Scaling Formulation	27
		2.4.1 The Kadanoff Scaling Hypothesis	27
		2.4.2 Approaches to the Transition Region	30
		2.4.3 First-Order Transitions	31
		2.4.4 Effective Exponents	32
	2.5	Logarithmic Singularities	33

	2.5.1	The Nightingale—'T Hooft Scaling Hypothesis	33
	2.5.2	Constraints on Scaling	3
	2.5.3	Approaches to the Transition Region	35
2.6	Correl	lation Functions	3
	2.6.1	Scaling Operators and Dimensions	3
	2.6.2	Variable Scaling Exponents	40
2.7	Densit	ties and Response Functions	41
2.8		al Point and Coexistence Curve	42
	2.8.1	Response Functions	44
	2.8.2	Critical Exponents	45
	2.8.3	Exponent Inequalities	46
2.9	Scalin	g for a Critical Point	46
	2.9.1	Scaling Fields for the Critical Point	47
	2.9.2	Approaches to the Critical Point	48
	2.9.3	Experimental Variables	50
	2.9.4	The Density and Response Functions	51
	2.9.5	Asymptotic Forms	51
	2.9.6	Critical Exponents and Scaling Laws	52
	2.9.7	Scaling for the Coexistence Curve	54
2.10	Mean-	-Field Theory for the Ising Ferromagnet	55
		lation Scaling at a Critical Point	57
		tical Point	58
2.13		g for a Tricritical Point	62
		Scaling Fields for the Tricritical Point	6^{2}
		Tricritical Exponents and Scaling Laws	64
		Connected Transition Regions	66
		ctions to Scaling	69
		g and Universality	70
2.16		-Size Scaling	75
		The Finite-Size Scaling Field	76
		The Shift and Rounding Exponents	78
		Universality and Finite-Size Scaling	80
2.17		rmal Invariance	81
		From Scaling to the Conformal Group	82
		Correlation Functions for $d \geq 2$	85
		Universal Amplitudes for $d = 2 \dots \dots$	84
Exa	mples .		86
Lan	dan ar	nd Landau–Ginzburg Theory	89
3.1		Perromagnetic Ising Model	89
3.2		au Theory for a Critical Point	9:
3.3		au-Ginzberg Theory for a Critical Point	93
3.3	3.3.1	The Gaussian Approximation	94
	3.3.2	Gaussian Critical Exponents	9
3.4		•	103

3.

	3.5	The 3-State Potts Model	
	3.6	Landau Theory for a Tricritical Point	
	Exai	mples	111
1.	Alg	ebraic Methods in Statistical Mechanics	113
	4.1	Introduction	113
	4.2	The Thermodynamic Limit	116
	4.3	Lower Bounds for Phase Transitions: the Peierls Method	117
	4.4	Lower Bounds for the Simple Lattice Fluid	123
	4.5	Grand Partition Function Zeros and Phase Transitions	125
	4.6	Ruelle's Theorem	127
	4.7	The Yang-Lee Circle Theorem	130
	4.8	Systems with Pair Interactions	
	4.9	Transfer Matrices	
		4.9.1 The Partition Function	
		4.9.2 Boundary Conditions	
		4.9.3 The Limit $N_2 \to \infty$	
		4.9.4 Correlation Functions	
		4.9.5 Correlation Lengths and Phase Transitions	
	4.10	The Wood Method	
		4.10.1 Evolution of Partition Function Zeros	
		4.10.2 Connection Curves and Cross-Block Curves	151
		4.10.3 The Spin- $\frac{1}{2}$ Square Lattice Ising Model	154
		4.10.4 Critical Points and Exponents	
	Exai	mples	
5.	The	Eight-Vertex Model	167
-	5.1	Introduction	
	5.2	Spin Representations	
	5.3	Parameter Space and Ground States	
	5.4	Some Transformations	
	5.5	The Weak-Graph Transformation	
	5.6	Transition Surfaces	
	5.7	The Transfer Matrix	182
	5.8	The Free Energy and Magnetization	186
	5.9	Critical Behaviour	187
	5.10	The Spin Representation and the Ising Model Limit	190
		5.10.1 The Isotropic Ising Model With a Four-Spin Coupling.	191
		5.10.2 The Jüngling Spin Representation	192
		5.10.3 The Isotropic Ising Model	
		Without a Four-Spin Coupling	192
	5.11	The Six-Vertex Model as a Special Case	
		5.11.1 Low-Temperature Regions (i) and (ii)	
		5.11.2 Low-Temperature Region (iii)	
		5.11.3 High-Temperature Regions (i), (ii) and (iii)	

	K 10 MI D' L. W M. L.L. LIV	
	5.12 The Eight-Vertex Model and Universality	
6.	Real-Space Renormalization Group Theory 20	3
•	6.1 Introduction	
	6.2 The Basic Elements of the Renormalization Group 20	
	6.3 Renormalization Transformations and Weight Functions 20	
	6.4 Fixed Points and the Linear Renormalization Group 21	
	6.5 Free Energy and Densities	4
	6.6 Decimation of the One-Dimensional Ising Model	5
	6.7 Decimation in Two Dimensions	2
	6.8 Lower-Bound and Upper-Bound Approximations	5
	6.8.1 An Upper-Bound Method	6
	6.8.2 A Lower-Bound Method	8
	6.9 The Cumulant Approximation	9
	6.10 Bond Moving Approximations	2
	6.11 Finite-Lattice Approximations	
	6.12 Variational Approximations	
	6.13 Phenomenological Renormalization	
	6.13.1 The Square Lattice Ising Model	
	6.13.2 Other Models	
	6.13.3 More Than One Coupling	
	6.14 Other Renormalization Group Methods	
	Examples	8
7.	Series Methods	
	7.1 Introduction	1
	7.2 The Analysis of Series	
	7.2.1 The Ratio Method	
	7.2.2 Padé Approximants	
	7.2.3 The Differential Approximant Method	
	7.3 Low-Temperature Series for the Spin- $\frac{1}{2}$ Ising Model 25	
	7.4 High-Temperature Series for the Spin- $\frac{1}{2}$ Ising Model 26	
	7.4.1 The Free Energy	
	7.4.2 Susceptibility Series	
	7.4.3 Coefficient Relations for Susceptibility Series	
	7.5 The Linked-Cluster Expansion	
	7.5.1 Multi-Bonded Graphs	
	7.5.2 Connected Graphs and Stars	
	7.5.3 Moments, Cumulants and Finite Clusters	
	7.6 Applications of the Linked-Cluster Expansion	
	7.6.1 The General-s Ising Model	
	7.6.2 D-Vector Models	
	7.6.3 The Classical Heisenberg Model	
	7 6 4 The Quantum Heisenberg Model 28	<

		7.6.5 Correlations and Susceptibility	286
	7.7	Finite Methods	290
		7.7.1 The Finite-Cluster Method	
		7.7.2 The Finite-Lattice Method	
	7.8	Results and Analysis	295
		7.8.1 High-Temperature Series for Spin- $\frac{1}{2}$ Ising	
		and Potts Models	
		7.8.2 Low-Temperature Series	
		7.8.3 High-Temperature K Expansions	
	Exa	mples	301
8.	Din	ner Assemblies	303
	8.1	Introduction	
	8.2	The Dimer Partition Function	
	_	8.2.1 The Square Lattice Case	
		8.2.2 The Honeycomb Lattice Case	
	8.3	The Modified KDP Model Equivalence	
	8.4	The Ising Model Equivalence	
	8.5	K-Type and O-Type Transitions	
	8.6	The Chain Conformal Transition	
		mples	
		1	
Α.	\mathbf{App}	pendices	335
	A.1	Fourier Transforms in d Dimensions	335
		A.1.1 Discrete Finite Lattices	335
		A.1.2 A Continuous Finite Volume	336
		A.1.3 A Continuous Infinite Volume	337
		A.1.4 A Special Case	338
	A.2	The Conformal Group	340
	A.3	Group Representation Theory	342
		A.3.1 Groups	342
		A.3.2 Representations	
		A.3.3 The Block Diagonalization of Transfer Matrices	347
		A.3.4 Equivalence Classes	349
		A.3.5 Using Equivalence Classes for Block Diagonalization	355
		A.3.6 The Transfer Matrix Eigen Problem	357
		Some Transformations in the Complex Plane	
	A.5	Algebraic Functions	363
	A.6	Elliptic Integrals, Functions and Nome Series	
		A.6.1 Elliptic Integrals	
		A.6.2 Elliptic Functions	
	A.7	i	
		A.7.1 Subgraphs	
		A.7.2 Section Graphs	373

A.7.3 Zero-Field Graphs	Ĺ
A.7.4 Magnetic Graphs and Coefficient Relations 374	Ŀ
A.7.5 Multi-Bonded Graphs)
A.7.6 Polygons and Triangulation 380)
A.7.7 Oriented Graphs)
A.8 The Weak-Graph Transformation	-
A.9 The Generalized Moment-Cumulant Relations 386	j
A.10 Kastelyn's Theorem)
A.10.1 The Canonical Flux Distribution)
A.10.2 The Dimer Partition Function)
A.10.3 Superposition Polynomials and Pfaffians 391	
A.11 Determinants of Cyclic Matrices	
A.12 The T Matrix)
References and Author Index	
Subject Index	}